Median and Mean

Concepts

1. The mean of a continuous random variable is the same as the expected value and is given by

$$
\mu=E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

A CDF is a function $F(x)$ where $F(x)=P(X \leq x)$, it tells us that probability of getting a value less than or equal to x. It is just defined as $F(x)=\int_{-\infty}^{x} f(x) d x$. It satisfies three important properties:

- $F(x)$ is nondecreasing. So if $x \leq y$, then $F(x) \leq F(y)$.
- $\lim _{x \rightarrow-\infty} F(x)=0$.
- $\lim _{x \rightarrow \infty} F(x)=1$.

The median is the point that is at the midpoint of the probability distribution. It is when $P(X \leq x)=0.5$ or when the CDF is equal to 0.5 .

Example

2. Let $g(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq 1 \\ 2-x & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Problems

3. True False It is possible for the mean for a discrete PDF to not exist.
4. True False Another name for the mean of a PDF is the expected value.
5. True False For a discrete PDF, the mean occurs with nonzero probability.
6. True False There exists a uniform distribution on all the real numbers.
7. Let $g(x)=\left\{\begin{array}{ll}x^{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
8. Let $F(x)=\frac{x-1}{x+1}$ for $x \geq 1$ and 0 for $x \leq 1$. Show that F is a CDF. Find the PDF associated with it and the probability that we choose a number between 1 and 2 .
9. Let $g(x)=\left\{\begin{array}{ll}e^{-x} & -1 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
10. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & x \leq-1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
11. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & 2 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.
